TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T6F19,JT6F19-AS

T6F19, JT6F19-AS CMOS Single-Chip LSI for LCD Calculator

The T6F19, JT6F19-AS is a CMOS single-chip microcomputer for 12 -digit capacity 1 -memory calculation.

T6F19, JT6F19-AS is the complete single chip CMOS LSI for calculator with single power supply operation.

Wide operating voltage range and low power consumption make it suitable for 1.5 V solar battery operated.

Besides T6F19, JT6F19-AS can selectable with a pin-programmable to function of Power timer and Memory hold. With the following features.

Features

- Display: 12 digits (selectable with a pin-programmable) of data, 2 digits of sign, error symbol, memory load symbol.
- Algebraic mode.
- Standard 4 functions (+,,$- \times, \div$)
- Rate conversion calculation
- Automatic percentage operation with add-on, discount.
- Automatic delta percentage, mark-up and markdown operations.
- Square root.
- Constant calculation.
- Chain calculation.
- Change sign.
- Floating point or momentary mode (selectable with a switch).
- Fixed point ("0", " 1 ", " 2 ", " $3 ", " 4$ " or " 6 " places) or floating point (selectable with a switch).
- Adding point mode (selectable with a switch).
- Rounding switches (rounding up, down and off).
- Leading zero suppression.
- Trailing zero suppression.
- Punctuation on display, commas for thousands.
- Memory contents indicator, turned on with non-zero in the memory.
- Registration overflow, indicating that too many digits are entered (the most significant digit are protected).
- Result overflow, indicating during calculation (most function key are locked as it happened).
- Memory overflow indicating to flashing of memory load mark.
- Key roll over function.
- Floating minus.

Pin Assignment (top view)

System Block Diagram

Battery Type

Dual Type

Solar Type

Connection of LCD

Segment

Common

Key Connection

Touch Key

Lock Key
K_{11} : Rounding switches.
K_{10} : Selectable with fixed point or floating mode.

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD} 1}$	$-0.3 \sim 2.0$	V
Input voltage	$\mathrm{V}_{\text {IN }}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD} 1}+0.3$	V
Operating temperature	$\mathrm{T}_{\text {opr }}$	$0 \sim 40$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 125$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ($\mathrm{V}_{\mathrm{DD} 1}=1.5 \pm 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \pm 0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Circuit	Pin Name	Test Condition	Min	Typ.	Max	Unit
Operating voltage		$\mathrm{V}_{\mathrm{DD} 1}$	-	-	-	1.2	1.5	2.0	V
"1" input voltage		$\mathrm{V}_{\mathrm{HH}}(1)$	-	$\begin{gathered} \mathrm{K}_{2} \sim \mathrm{~K}_{9} \\ \text { RESET } \end{gathered}$	-	$\begin{aligned} & V_{D D 1} \\ & -0.4 \end{aligned}$	-	$V_{\text {DD1 }}$	V
"1" input voltage		$\mathrm{V}_{\mathrm{IH}(2)}$	-	$\mathrm{K}_{10} \sim \mathrm{~K}_{13}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2} \\ & -0.4 \end{aligned}$	-	$V_{\text {DD2 }}$	V
"0" input voltage		VIL	-	$\begin{aligned} & \hline \mathrm{K}_{2} \sim \mathrm{~K}_{13} \\ & \text { RESET } \end{aligned}$	-	0	-	0.4	V
"1" output voltage		VOH (1)	-	SEGMENT COM1~3	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2} \\ & -0.2 \end{aligned}$	-	$\mathrm{V}_{\mathrm{DD} 2}$	V
"0" output voltage		VoL (1)	-	SEGMENT COM1~3	-	0	-	0.2	V
"M" output voltage		VOM	-	COM1~3	-	$\begin{aligned} & V_{D D 1} \\ & -0.2 \end{aligned}$	-	$\begin{aligned} & V_{D D 1} \\ & +0.2 \end{aligned}$	V
"1" output voltage		$\mathrm{V}_{\mathrm{OH}}(2)$	-	$\mathrm{K}_{1} \sim \mathrm{~K}_{9}$	-	$\begin{aligned} & V_{D D 1} \\ & -0.2 \end{aligned}$	-	$V_{\text {DD1 }}$	V
"0" output voltage		$\mathrm{V}_{\text {OL (2) }}$	-	$\mathrm{K}_{1} \sim \mathrm{~K}_{13}$	-	0	-	0.2	V
"1" output resistance		ROH	-	SEGMENT COM1~3	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD2 }}-0.5 \mathrm{~V}$	-	-	70	k Ω
"0" output resistance		RoL	-	SEGMENT COM1~3	V ${ }_{\text {OUT }}=0.5 \mathrm{~V}$	-	-	70	k Ω
Key pull up resistance		RKEYH (1)	-	RESET	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD } 1}-0.5 \mathrm{~V}$	-	-	25	k Ω
		RKEYH (2)	-	$\mathrm{K}_{0} \sim \mathrm{~K}_{9}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD } 1}-0.5 \mathrm{~V}$	-	-	14	
		RKEYH (3)	-	$\mathrm{K}_{10} \sim \mathrm{~K}_{13}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	120	-	800	
Key pull down resistance		RKEYL (1)	-	RESET (1)	$V_{\text {OUT }}=V_{\text {DD1 }}$	100	-	300	k Ω
		RKEYL (2)	-	RESET (2)	$V_{\text {OUT }}=V_{\text {DD1 }}$	18	-	300	
		$\mathrm{R}_{\mathrm{KEYL}}$ (3)	-	$\mathrm{K}_{0} \sim \mathrm{~K}_{9}(1)$	$V_{\text {OUT }}=0.5 \mathrm{~V}$	-	-	50	
		RKEYL (4)	-	$\mathrm{K}_{0} \sim \mathrm{~K}_{9}(2)$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD1 }}$	72	-	170	
Oscillating (WAIT)		f¢WAIT	-	-	$V_{D D 1}=1.5 \mathrm{~V}$	5.4	9.0	15.5	kHz
Frequency (OPERATE)		f¢OP	-	-	$V_{D D 1}=1.5 \mathrm{~V}$	20.0	34	61.3	kHz
Frame frequency		f_{F}	-	SEGMENT COM1~3	$V_{D D 1}=1.5 \mathrm{~V}$	56.3	93.8	161.5	Hz
Supply current	1 (WAIT)	IDDWAIT	-	-	$V_{D D 1}=1.5 \mathrm{~V}$	-	-	3.3	$\mu \mathrm{A}$
	2 (OPERATE)	IDDOP	-	-	$V_{D D 1}=1.2 \mathrm{~V}$	-	-	8.9	
	3 (OFF)	IDDOFF	-	-	$V_{D D 1}=1.5 \mathrm{~V}$	-	-	2.0	
Power off timer times		T	-	-	$\mathrm{V}_{\mathrm{DD} 1}=1.5 \mathrm{~V}$	429	600	1001	s

Waveforms for Display

Note 1: at $\mathrm{f} \phi=9 \mathrm{kHz}$

Pad Location Table

Name	X Point	Y Point
B_{6}	-1757	-1680
C_{6}	-1757	-1520
A_{7}	-1757	-1360
B_{7}	-1757	-1200
C_{7}	-1757	-1040
A_{8}	-1757	-880
B_{8}	-1757	-720
C_{8}	-1757	-560
A9	-1757	-400
B9	-1757	-240
C9	-1757	-80
A_{10}	-1757	80
B_{10}	-1757	240
C_{10}	-1757	400
A_{11}	-1757	560
B_{11}	-1757	720
C_{11}	-1757	880
A_{12}	-1757	1040
B_{12}	-1757	1200
C_{12}	-1757	1360
A_{13}	-1757	1520
B_{13}	-1757	1680
C_{13}	-1089	1753
A_{14}	-929	1753
B_{14}	-769	1753
C_{14}	-609	1753
A_{15}	-449	1753
B_{15}	-289	1753
S_{1}	-129	1753
S_{2}	31	1753
S_{3}	191	1753
S_{4}	351	1753
$\mathrm{V}_{\text {SS }}$	511	1753
$\mathrm{V}_{\text {A }}$	671	1753
V_{B}	831	1753
$\mathrm{V}_{\text {DD2 }}$	991	1753
VDD1	1151	1753
V_{G}	1388	1753

Note 2: () Do not connect.
($\mu \mathrm{m}$)

Name	X Point	Y Point
RESET	1757	1680
(TS1)	1757	1520
(TS2)	1757	1360
(TS3)	1757	1200
(TS4)	1757	1040
K_{0}	1757	880
K_{1}	1757	720
K_{2}	1757	560
K_{3}	1757	400
K_{4}	1757	240
K_{5}	1757	80
K_{6}	1757	-80
K_{7}	1757	-240
K_{8}	1757	-400
K9	1757	-560
K_{10}	1757	-720
K_{11}	1757	-880
K_{12}	1757	-1040
K_{13}	1757	-1200
COM1	1757	-1360
COM2	1757	-1520
COM3	1757	-1680
A_{1}	1122	-1752
B_{1}	962	-1752
C_{1}	802	-1752
A_{2}	642	-1752
B_{2}	482	-1752
C_{2}	322	-1752
A_{3}	162	-1752
B_{3}	2	-1752
C_{3}	-158	-1752
A4	-318	-1752
B_{4}	-478	-1752
C_{4}	-638	-1752
A_{5}	-798	-1752
B_{5}	-958	-1752
C_{5}	-1118	-1752
A_{6}	-1278	-1752

Chip Layout

Pad Layout

Active Element

PAD Pitch $160 \mu \mathrm{~m}$

Package Dimensions

QFP80-P-1420-0.80A
Unit : mm

Weight: 1.52 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

